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Surface Splatting
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Figure 1: Surface splatting of a scan of a human face, textured terrain, and a complex point-sampled object with semi-transparent surfaces.

Abstract
Modern laser range and optical scanners need rendering techniques
that can handle millions of points with high resolution textures.
This paper describes a point rendering and texture filtering tech-
nique called surface splatting which directly renders opaque and
transparent surfaces from point clouds without connectivity. It
is based on a novel screen space formulation of the Elliptical
Weighted Average (EWA) filter. Our rigorous mathematical anal-
ysis extends the texture resampling framework of Heckbert to ir-
regularly spaced point samples. To render the points, we develop a
surface splat primitive that implements the screen space EWA filter.
Moreover, we show how to optimally sample image and procedural
textures to irregular point data during pre-processing. We also com-
pare the optimal algorithm with a more efficient view-independent
EWA pre-filter. Surface splatting makes the benefits of EWA tex-
ture filtering available to point-based rendering. It provides high
quality anisotropic texture filtering, hidden surface removal, edge
anti-aliasing, and order-independent transparency.

Keywords: Rendering Systems, Texture Mapping, Antialiasing,
Image-Based Rendering, Frame Buffer Algorithms.

1 Introduction
Laser range and image-based scanning techniques have produced
some of the most complex and visually stunning models to date [9].
One of the challenges with these techniques is the huge volume of
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point samples they generate. A commonly used approach is gener-
ating triangle meshes from the point data and using mesh reduction
techniques to render them [7, 2]. However, some scanned meshes
are too large to be rendered interactively [9], and some applications
cannot tolerate the inherent loss in geometric accuracy and texture
fidelity that comes from polygon reduction.

Recent efforts have focused on direct rendering techniques for
point samples without connectivity [16, 4, 15]. These techniques
use hierarchical data structures and forward warping to store and
render the point data efficiently. One important challenge for point
rendering techniques is to reconstruct continuous surfaces from the
irregularly spaced point samples while maintaining the high texture
fidelity of the scanned data. In addition, the point rendering should
correctly handle hidden surface removal and transparency.

In this paper we propose a new point rendering technique called
surface splatting, focusing on high quality texture filtering. In con-
trast to previous point rendering approaches, surface splatting uses
a novel screen space formulation of the Elliptical Weighted Average
(EWA) filter [3], the best anisotropic texture filtering algorithm for
interactive systems. Extending the framework of Heckbert [6], we
derive a screen space form of the EWA filter for irregularly spaced
point samples without global texture parameterization. This makes
surface splatting applicable to high-resolution laser range scans, ter-
rain with high texture detail, or point-sampled geometric objects
(see Figure 1). A modified A-buffer [1] provides hidden surface
removal, edge anti-aliasing, and order-independent transparency at
a modest increase in computation efforts.

The main contribution of this paper is a rigorous mathemati-
cal formulation of screen space EWA texture filtering for irregular
point data, presented in Section 3. We show how the screen space
EWA filter can be efficiently implemented using surface splatting
in Section 4. If points are used as rendering primitives for complex
geometry, we want to apply regular image textures to point sam-
ples during conversion from geometric models. Hence, Section 5
introduces an optimal texture sampling and pre-filtering method for
irregular point samples. Sections 6 and 7 present our modified A-
buffer method for order-independent transparency and edge anti-
aliasing, respectively. Finally, we discuss implementation, timings,
and image quality issues in Section 8.
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2 Previous Work
Texture mapping increases the visual complexity of objects by map-
ping functions for color, normals, or other material properties onto
the surfaces [5]. If these texture functions are inappropriately band-
limited, texture aliasing may occur during projection to raster im-
ages. For a general discussion of this problem see [21]. Although
we develop our contributions along similar lines to the seminal
work of Heckbert [6], our approach is fundamentally different from
conventional texture mapping. We present the first systematic anal-
ysis for representing and rendering texture functions on irregularly
point-sampled surfaces.

The concept of representing objects as a set of points and using
these as rendering primitives has been introduced in a pioneering re-
port by Levoy and Whitted [10]. Due to the continuing increase in
geometric complexity, their idea has recently gained more interest.
QSplat [16] is a point rendering system that was designed to interac-
tively render large data sets produced by modern scanning devices.
Other researchers demonstrated the efficiency of point-based meth-
ods for rendering geometrically complex objects [4, 15]. In some
systems, point-based representations are temporarily stored in the
rendering pipeline to accelerate rendering [11, 17]. Surprisingly,
nobody has systematically addressed the problem of representing
texture functions on point-sampled objects and avoiding aliasing
during rendering. We present a surface splatting technique that can
replace the heuristics used in previous methods and provide supe-
rior texture quality.

Volume splatting [19] is closely related to point rendering and
surface splatting. A spherical 3D reconstruction kernel centered at
each voxel is integrated along one dimension into a 2D “footprint
function.” As each voxel is projected onto the screen, the 2D foot-
prints are accumulated directly into the image buffer or into image-
aligned sheet buffers. Some papers [18, 14] address aliasing caused
by insufficient resampling rates during perspective projections. To
prevent aliasing, the 3D reconstruction kernels are scaled using a
heuristic. In contrast, surface splatting models both reconstruct-
ing and band-limiting the texture function in a unified framework.
Moreover, instead of pre-integrating isotropic 3D kernels, it uses
oriented 2D kernels, providing anisotropic filtering for surface tex-
tures.

3 The Surface Splatting Framework
The basis of our surface splatting method is a model for the rep-
resentation of continuous texture functions on the surface of point-
based graphics objects, which is introduced in Section 3.1. Since
the 3D points are usually positioned irregularly, we use a weighted
sum of radially symmetric basis functions. With this model at hand,
we look at the task of rendering point-based objects as a concatena-
tion of warping, filtering, and sampling the continuous texture func-
tion. In Section 3.2 we extend Heckbert’s resampling theory [6]
to process point-based objects and develop a mathematical frame-
work of the rendering procedure. In Section 3.3 we derive an al-
ternative formulation of the EWA texture filter that we call screen
space EWA, leading to the surface splatting algorithm discussed in
Section 4. In Section 5, we describe how to acquire the texture
functions, which can be regarded as a scattered data approximation
problem. A continuous approximation of the unknown original tex-
ture function needs to be computed from an irregular set of sam-
ples. We distinguish between scanned objects with color per point
and regular textures that are explicitly applied to point-sampled ge-
ometry.

3.1 Texture Functions on Point-Based Objects
In conventional polygonal rendering, texture coordinates are usu-
ally stored per vertex. This enables the graphics engine to combine
the mappings from 2D texture space to 3D object space and from
there to 2D screen space into a compound 2D to 2D mapping be-

tween texture and screen space. Using this mapping, pixel colors
are computed by looking up and filtering texture samples in 2D
texture space at rendering time. There is no need for a sampled
representation of the texture in 3D object space. By contrast, the
compound mapping function is not available with point-based ob-
jects at rendering time. Consequently, we must store an explicit
texture representation in object space.

We represent point-based objects as a set of irregularly spaced
points {Pk} in three dimensional object space without connectiv-
ity. A point Pk has a position and a normal. It is associated with
a radially symmetric basis function rk and coefficients wr

k, wg
k, wb

k

that represent continuous functions for red, green, and blue color
components. Without loss of generality, we perform all further cal-
culations with scalar coefficients wk. Note that the basis functions
rk and coefficients wk are determined in a pre-processing step, de-
scribed in Section 5.

We define a continuous function on the surface represented by
the set of points as illustrated in Figure 2. Given a point Q any-

3D object space

Pk
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u1

2D parameterization
local parameterization
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Figure 2: Defining a texture function on the surface of a point-based
object.

where on the surface, shown left, we construct a local parameteri-
zation of the surface in a small neighborhood of Q, illustrated on
the right. The points Q and Pk have local coordinates u and uk,
respectively. We define the continuous surface function fc(u) as
the weighted sum:

fc(u) =
X
k∈N

wkrk(u − uk). (1)

We choose basis functions rk that have local support or that are ap-
propriately truncated. Then u lies in the support of a small number
of basis functions. Note that in order to evaluate (1), the local pa-
rameterization has to be established in the union of these support ar-
eas only, which is very small. Furthermore, we will compute these
local parameterizations on the fly during rendering as described in
Section 4.

3.2 Rendering
Heckbert introduced a general resampling framework for texture
mapping and the EWA texture filter in [6]. His method takes a reg-
ularly sampled input function in source space, reconstructs a con-
tinuous function, warps it to destination space, and computes the
properly sampled function in destination space. Properly sampled
means that the Nyquist criterion is met. We will use the term screen
space instead of destination space.

We extend this framework towards a more general class of in-
put functions as given by Equation (1) and describe our rendering
process as a resampling problem. In contrast to Heckbert’s regular
setting, in our representation the basis functions rk are irregularly
spaced. In the following derivation, we adopt Heckbert’s notation.

Given an input function as in Equation (1) and a mapping x =
m(u) : R2 → R

2 from source to screen space, rendering involves
the three steps illustrated in Figure 3:
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Figure 3: Warping, filtering, and sampling the texture function.

1. Warp fc(u) to screen space, yielding the warped, continuous
screen space signal gc(x):

gc(x) = (fc ◦m−1)(x) = fc(m
−1(x)),

where ◦ denotes function concatenation.

2. Band-limit the screen space signal using a prefilter h, result-
ing in the continuous output function g′c(x):

g′
c(x) = gc(x) ⊗ h(x) =

Z
R2

gc(ξ)h(x− ξ)dξ,

where ⊗ denotes convolution.

3. Sample the continuous output function by multiplying it with
an impulse train i to produce the discrete output g(x):

g(x) = g′
c(x)i(x).

An explicit expression for the warped continuous output function
can be derived by expanding the above relations in reverse order:

g′
c(x) =

Z
R2

h(x − ξ)
X
k∈N

wkrk(m−1(ξ) − uk)dξ

=
X
k∈N

wkρk(x), (2)

where ρk(x) =

Z
R2

h(x − ξ)rk(m−1(ξ) − uk)dξ. (3)

We call a warped and filtered basis function ρk(x) a resampling
kernel, which is expressed here as a screen space integral. Equa-
tion (2) states that we can first warp and filter each basis function
rk individually to construct the resampling kernels ρk and then sum
up the contributions of these kernels in screen space. We call this
approach surface splatting, as illustrated in Figure 4. In contrast
to Heckbert, who transformed the screen space integral of Equa-
tion (2) to a source space integral and formulated a source space
resampling kernel, we proceed with (3) to derive a screen space
resampling kernel.

In order to simplify the integral for ρk(x) in (3), we replace a
general mapping m(u) by its local affine approximation muk at a
point uk ,

muk(u) = xk + Juk · (u − uk), (4)

where xk = m(uk) and the Jacobian Juk = ∂m
∂u

(uk).

screen space object space

resampling kernel ρk(x)

Pk

discrete output g(x)
mapping x=m(u)

m(uk)

Figure 4: Rendering by surface splatting, resampling kernels are
accumulated in screen space.

Heckbert relied on the same approximation in his derivation [6].
Since the basis functions rk have local support, muk is used only
in a small neighborhood around uk in (3). Moreover, the approx-
imation is most accurate in the neighborhood of uk and so it does
not cause visual artifacts. We use it to rearrange Equation (3), and
after a few steps we find:

ρk(x) =

Z
R2

h(x − muk(uk) − ξ)r′k(ξ)dξ

= (r′k ⊗ h)(x −muk (uk)), (5)

where r′k(x) = rk(J−1
uk

x) denotes a warped basis function. Thus,
although the texture function is defined on an irregular grid, Equa-
tion (5) states that the resampling kernel in screen space, ρk(x),
can be written as a convolution of a warped basis function r′k and
the low-pass filter kernel h. This is essential for the derivation of
screen space EWA in the next section. Note that from now on we
are omitting the subscript uk for m and J.

3.3 Screen Space EWA
Like Greene and Heckbert [3], we choose elliptical Gaussians both
for the basis functions and the low-pass filter, since they are closed
under affine mappings and convolution. In the following derivation
we apply these mathematical properties to the results of the previ-
ous section. This enables us to express the resampling kernel as a
single Gaussian, facilitating efficient evaluation during rendering.

An elliptical Gaussian GV(x) with variance matrix V is defined
as:

GV(x) =
1

2π|V| 12
e−

1
2xT V−1x,

where |V| is the determinant of V. We denote the variance matrices
of the basis functions rk and the low-pass filter h with Vr

k and Vh,
respectively. The warped basis function and the low-pass filter are:

r′k(x) = r(J−1x) = GVr
k
(J−1x) =

1

|J−1|GJVr
k
JT (x)

h(x) = GVh(x).

The resampling kernel ρk of (5) can be written as a single Gaussian
with a variance matrix that combines the warped basis function and
the low-pass filter. Typically Vh = I, yielding:

ρk(x) = (r′k ⊗ h)(x − m(uk))

=
1

|J−1| (GJVr
k
JT ⊗ GI)(x −m(uk))

=
1

|J−1|GJVr
k
JT +I(x − m(uk)). (6)

We will show how to determine J−1 in Section 4, and how to com-
pute Vr

k in Section 5. Substituting the Gaussian resampling kernel
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(6) into (2), the continuous output function is the weighted sum:

g′
c(x) =

X
k∈N

wk
1

|J−1|GJVr
k
JT +I(x − m(uk)). (7)

We call this novel formulation screen space EWA. Note that Equa-
tion (7) can easily be converted to Heckbert’s original formulation
of the EWA filter by transforming it to source space. Remember
that m denotes the local affine approximation (4), hence:

x − m(uk) = m(m−1(x) − uk) = J · (m−1(x) − uk).

Substituting this into (7) we get:

g′
c(x) =

X
k∈N

wkGVr
k
+J−1J−1T (m−1(x) − uk). (8)

Equation (8) states the well known source space EWA method
extended for irregular sample positions, which is mathematically
equivalent to our screen space formulation. However, (8) involves
backward mapping a point x from screen to the object surface,
which is impractical for interactive rendering. It amounts to ray
tracing the point cloud to find surface intersections. Additionally,
the locations uk are irregularly positioned such that the evaluation
of the resampling kernel in object space is laborious. On the other
hand, Equation (7) can be implemented efficiently for point-based
objects as described in the next section.

4 The Surface Splatting Algorithm
Intuitively, screen space EWA filtering (7) starts with projecting a
radially symmetric Gaussian basis function from the object surface
onto the image plane, resulting in an ellipse. The ellipse is then
convolved with a Gaussian low-pass filter yielding the resampling
filter, whose contributions are accumulated in screen space. Algo-
rithmically, surface splatting proceeds as follows:

for each point P[k] {
project P[k] to screen space;
determine the resampling kernel rho[k];
splat rho[k];

}
for each pixel x in the frame buffer {
shade x;

}

We describe these operations in detail:

Determining the resampling kernel The resampling kernel
ρk(x) in Equation (6) is determined by the Jacobian J of the 2D
to 2D mapping that transforms coordinates of the local surface pa-
rameterization to viewport coordinates. This mapping consists of a
concatenation of an affine viewing transformation that maps the ob-
ject to camera space, a perspective projection to screen space, and
the viewport mapping to viewport coordinates.

Note that in the viewing transformation we do not allow non-
uniform scaling or shearing. This means we preserve the rotation
invariance of our basis functions in camera space. Hence, the Jaco-
bian of this transformation can be written as a uniform scaling ma-
trix with scaling factor smv . Similarly, since we restrict the view-
port mapping to translations and uniform scaling, we can describe
its Jacobian with a scaling factor svp.

To compute the Jacobian Jpr of the perspective projection, we
have to compute the local surface parameterization. After the view-
ing transformation, objects are given in camera coordinates that can
be projected simply by division by the z coordinate. The center of
projection is at the origin of camera space and the projection plane
is the plane z = 1. The following explanations are illustrated in
Figure 5. We construct a local parameterization of the object sur-

screen space (z=1)

x0

x1

x~0

x~1

u0

u1

nk

Pk

tangent plane at Pk, i.e.,
locally parameterized source space 

x

z
y

camera coordinates

Figure 5: Calculating the Jacobian J−1
pr .

face around a point Pk by approximating the surface with its tan-
gent plane given by the normal nk (transformed to camera space)
at Pk. We define the parameterization by choosing two orthogo-
nal basis vectors u0 and u1 in the tangent plane. Since our basis
functions are radially symmetric, the orientation of these vectors is
arbitrary. Note that the tangent plane approximation leads to the
same inconsistencies of the local parameterizations as in conven-
tional rendering pipelines. There, the perspective mapping from
texture space to screen space is determined per triangle. However,
when the EWA kernel of a pixel near a triangle edge is warped to
texture space, it may overlap a region of the texture that is mapped
to several triangles, leading to slightly incorrect filtering of the tex-
ture. Yet, for both rendering methods, the error introduced is too
small to cause visual artifacts.

The mapping of coordinates of the local parameterization to
screen coordinates is given by the perspective projection of the tan-
gent plane to screen space. We find the Jacobian J−1

pr of the inverse
mapping at the point Pk by projecting the basis vectors of screen
space x0 and x1 along the viewing ray that connects the center of
projection with Pk onto the tangent plane. This results in the vec-
tors x̃0 and x̃1. Specifically, we choose u0 = x̃0/‖x̃0‖ and con-
struct u1 such that u0,u1, and the normal nk form a right-handed
orthonormal coordinate system. This simplifies the Jacobian, since
x̃0 · u1 = 0 and x̃0 · u0 = ‖x̃0‖, which is then given by:

J−1
pr =

�
x̃0 · u0 x̃1 · u0

x̃0 · u1 x̃1 · u1

�
=

� ‖x̃0‖ x̃1 · u0

0 x̃1 · u1

�
,

where · denotes the vector dot product.
Concatenating the Jacobians of viewing transformation, projec-

tion, and viewport mapping, we finally get J:

J = svp · Jpr · smv .

Splatting the resampling kernel First, each point Pk is
mapped to the position m(uk) on screen. Then the resampling ker-
nel is centered at m(uk) and is evaluated for each pixel. In other
words, the contributions of all points are splatted into an accumu-
lation buffer. The projected normals of the points are filtered in
the same way. Besides color and normal components, each frame
buffer pixel contains the sum of the accumulated contributions of
the resampling kernels and camera space z values as well (see Ta-
ble 1).

Although the Gaussian resampling kernel has infinite support in
theory, in practice it is computed only for a limited range of the ex-

ponent β(x) = 1
2
xT (I + J−1J−1T

)x. We choose a cutoff radius
c, such that β(x) < c. Bigger values for c increase image quality
but also the cost of splatting the kernel. A typical choice is c = 1,
providing good image quality at moderate splatting cost [6, 13].
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Data Storage
RGBA color components 4 × 4 Bytes
XYZ normal components 3 × 4 Bytes

Accumulated contributions 4 Bytes
Camera space z value 4 Bytes

Material index 2 Bytes
Total per pixel: 38 Bytes

Table 1: Data storage per frame buffer pixel.

Because the resampling kernels are truncated to a finite support, an
additional normalization by the sum of the accumulated contribu-
tions is required, yielding the final pixel value:

g(x) =
X
k∈N

wk
ρk(x)P

j∈Nρj(x)
. (9)

Since the pixel grid in screen space is regular, the kernel can be eval-
uated efficiently by forward differencing in a rectangular bounding
box and using lookup tables.

In general, the depth complexity of a scene is greater than one,
thus a mechanism is required that separates the contributions of dif-
ferent surfaces when they are splatted into the frame buffer. Conse-
quently, the z value of the tangent plane at Pk is computed at each
pixel that is covered by the kernel, which can be done by forward
differencing as well. This is similar to the visibility splatting ap-
proach of [15]. To determine whether a new contribution belongs
to the same surface as is already stored in a pixel, the difference be-
tween the new z value and the z value stored in the frame buffer is
compared to a threshold. If the difference is smaller than the thresh-
old, the contribution is added to the pixel. Otherwise, given that it
is closer to the eye-point, the data of the frame buffer is replaced by
the new contribution.

Deferred shading The frame buffer is shaded after all points
of a scene have been splatted. This avoids shading invisible points.
Instead, each pixel is shaded using the filtered normal. Parameters
for the shader are accessed via an index to a table with material
properties (see Table 1). Advanced pixel shading methods, such as
reflection mapping, can be easily implemented as well.

5 Texture Acquisition
In this section we address the problem of pre-computing the texture
coefficients wk and the basis functions rk of the continuous texture
function in (1).

Determining the basis functions As in Section 3.2, the basis
functions rk are Gaussians with variance matrices Vr

k. For each
point Pk , this matrix has to be chosen appropriately in order to
match the local density of points around Pk. In some applications,
we can assume that the sampling pattern in the local planar area
around uk is a jittered grid with sidelength h in object space. Then
a simple solution to choose Vr

k is:

Vr
k =

�
1

h2 0
0 1

h2

�
,

which scales the Gaussian by h. For example in the Surfel sys-
tem [15], h is globally given by the object acquisition process that
samples the positions uk. Another possibility is to choose h as the
maximum distance between points in a small neighborhood. This
value can be pre-computed and stored in a hierarchical data struc-
ture as in [16].

Computing the coefficients We distinguish between two dif-
ferent settings when computing the coefficients wk:

1. Objects with per point color. The object acquisition method
provides points with per point color samples.

2. Texture mapping point-based objects. Image or procedural
textures from external sources are applied to a given point-
sampled geometry.

Objects with per point color Many of today’s imaging sys-
tems, such as laser range scanners or passive vision systems [12],
acquire range and color information. In such cases, the acquisition
process provides a color sample ck with each point. We have to
compute a continuous approximation fc(u) of the unknown origi-
nal texture function from the irregular set of samples ck .

A computationally reasonable approximation is to normalize the
basis functions rk to form a partition of unity, i.e., to sum up to
one everywhere. Then we use the samples as coefficients, hence
wk = ck , and build a weighted sum of the samples ck:

fc(u) =
X
k∈N

ck r̂k(u − uk) =
X
k∈N

ck
rk(u − uk)P
j∈Nrj(u − uj)

,

where r̂k are the normalized basis functions. However, these are ra-
tional functions, invalidating the derivation of the resampling kernel
in Section 3.2. Instead, we normalize the resampling kernels, which
are warped and band-limited basis functions. This normalization
does not require additional computations, since it is performed dur-
ing rendering, as described in Equation (9).

Texture mapping of point-based objects When an im-
age or procedural texture is explicitly applied to point-sampled ge-
ometry, a mapping function from texture space to object space has
to be available at pre-processing time. This allows us to warp the
continuous texture function from texture space with coordinates s
to object space with coordinates u. We determine the unknown co-
efficients wk of fc(u) such that fc(u) optimally approximates the
texture.

From the samples ci and the sampling locations si of the tex-
ture, the continuous texture function cc(s) is reconstructed using
the reconstruction kernel n(s), yielding:

cc(s) =
X

i

cin(s − si) =
X

i

cini(s).

In our system, the reconstruction kernel is a Gaussian with unit vari-
ance, which is a common choice for regular textures. Applying the
mapping u = t(s) from texture space to object space, the warped
texture function f̃c(u) is given by:

f̃c(u) = cc(t
−1(u)) =

X
i

cini(t
−1(u)).

With f̃c(u) in place, our goal is to determine the coefficients wk

such that the error of the approximation provided by fc(u) is min-
imal. Utilizing the L2 norm, the problem is minimizing the follow-
ing functional:

F (w) = ‖f̃c(u) − fc(u)‖2
L2

= ‖Pi cini(t
−1(u)) −Pk wkrk(u − uk)‖2

L2 , (10)

where w = (wj) denotes the vector of unknown coefficients. Since
F (w) is a quadratic function of the coefficients, it takes its mini-
mum at ∇F (w) = 0, yielding a set of linear equations. After some
algebraic manipulations, detailed in Appendix A, we find the linear
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system Rw = c. The elements of the matrix R and the vector c
are given by the inner products:

(R)kj =< rk, rj > and

(c)k =
X

i

ci〈rk, ni ◦ t−1〉. (11)

We compare this optimization method with a view-independent
EWA approach, similar as proposed in [4, 15]. Our novel tech-
nique is a generalization of view-independent EWA, which can be
derived from (11) by means of the simplifying assumption that the
basis functions rk are orthonormal. In this case, the inner prod-
ucts are given by 〈rk, rj〉 = δkj , where δkj = 1 if k = j and
δkj = 0 otherwise. Consequently, R is the identity matrix and the
coefficients are determined as in EWA filtering by:

wk =
X

i

ci〈rk, ni ◦ t−1〉.

In Figure 6, we show a checkerboard texture that was sampled to
an irregular set of points. On the left, we applied our optimized tex-
ture sampling technique. On the right, we used view-independent
EWA. In the first row, the textures are rendered under minification,
which does not reveal the difference between the continuous tex-
ture functions, since the filter used for rendering is dominated by
the band-limiting step. In the second row, however, magnifica-
tion clearly illustrates that optimized texture sampling produces a
much sharper approximation of the original texture. In the third
row, we use extreme magnification to visualize the irregular pattern
of points, depicted in the middle.

Optimized sampling View-indep. EWA sampling

minification

magnification

Figure 6: Left: optimized texture sampling. Right: view-
independent EWA. Bottom middle: Irregular grid of points in the
area shown on the left and right.

6 Transparency
The basic algorithm described in Section 4 can be easily extended to
handle transparent surfaces as well. Our approach provides order-
independent transparency using a single rendering pass and a fixed
amount of frame buffer memory.

The general idea is to use a frame buffer that consists of several
layers, each containing the data listed in Table 1. A layer stores a
fragment at each pixel. The purpose of a fragment is to collect the
contributions of a single surface to the pixel. After all points have
been splatted, the fragments are blended back-to-front to produce
the final pixel color.

We adopt the strategy presented in [8], which avoids the disad-
vantages of both multi-pass (e.g., [20]) and basic A-buffer (e.g., [1])
algorithms. Providing a small fixed number l of fragments per
pixel, fragments are merged whenever the number of fragments ex-
ceeds the preset limit l. We apply the same rendering procedure as
described in Section 4, where the splatting is extended as follows:

Splatting the resampling kernel In contrast to the single lay-
ered frame buffer of Section 4, the frame buffer now contains sev-
eral layers, each storing a fragment per pixel. Each contribution
that is splatted into a pixel is processed in three steps:

1. Accumulate-or-Separate Decision. Using a z threshold as de-
scribed in Section 4, all fragments of the pixel are checked to
see if they contain data of the same surface as the new con-
tribution. If this is the case, the contribution is added to the
fragment and we are done. Otherwise, the new contribution
is treated as a separate surface and a temporary fragment is
initialized with its data.

2. New Fragment Insertion. If the number of fragments includ-
ing the temporary fragment is smaller than the limit l, the tem-
porary fragment is copied into a free slot in the frame buffer
and we are done.

3. Fragment Merging. If the above is not true, then two frag-
ments have to be merged. Before merging, the fragments have
to be shaded.

When fragments are merged, some information is inevitably lost
and visual artifacts may occur. These effects are minimized by us-
ing an appropriate merging strategy. Unfortunately, the situation is
complicated by the fact that a decision has to be taken as the scene
is being rendered, without knowledge about subsequent rendering
operations. The main criterion for merging fragments is the dif-
ference between their z values. This reduces the chance that there
are other surfaces, which are going to be rendered later, that lie be-
tween the two merged surfaces. In this case, incorrect back-to-front
blending may introduce visual artifacts.

Before fragments can be merged, their final color has to be deter-
mined by shading them. Shaded fragments are indicated by setting
their accumulated weight (see Table 1) to a negative value to guar-
antee that they are shaded exactly once. The color and alpha values
of the front and back fragment to be merged are cf , αf and cb, αb,
respectively. The color and alpha values co, αo of the merged frag-
ment are computed using:

co = cfαf + cbαb (1 − αf )

αo = αf + αb (1 − αf ) . (12)

Similar to Section 4, fragments are shaded if necessary in a second
pass. After shading, the fragments of each pixel are blended back-
to-front as described in Equation (12) to produce the final pixel
color.

Figure 7 shows a geometric object consisting of semi-
transparent, intersecting surfaces, rendered with the extended sur-
face splatting algorithm. In most areas, the surfaces are blended
flawlessly back-to-front. The geometry of the surfaces, however,
is not reconstructed properly around the intersection lines, as illus-
trated in the close-up on the right. In these regions, contributions of
different surfaces are mixed in the fragments, which can cause vi-
sual artifacts. On the other hand, in areas of high surface curvature
the local tangent plane approximation poorly matches the actual
surface. Hence, it may happen that not all contributions of a surface
are collected in a single fragment, leading to similar artifacts. Es-
sentially, both cases arise because of geometry undersampling. We
can avoid the problem by increasing the geometry sampling rate or
by using a higher order approximation of the surface. However, the
latter is impracticable to compute for interactive rendering.

7 Edge Antialiasing
In order to perform edge antialiasing, information about partial cov-
erage of surfaces in fragments is needed. For point-based represen-
tations, one way to approximate coverage is to estimate the density
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Figure 7: Geometric object with intersecting, semi-transparent sur-
faces, rendered with the extended surface splatting algorithm and
edge-antialiasing.

of projected points per pixel area [10]. Coverage is then computed
by measuring the actual density of points in a fragment and dividing
the measured value by the estimated value.

Rather than explicitly calculating this estimation, we make the
simplifying assumption that the Gaussian basis functions are lo-
cated on a regular grid and have unit variance. In this case, they
approximate a partition of unity. In other words, we assume that
they sum up to one at any point. Warping and band-limiting this
constant function results in a constant function again. Therefore
the sum q of the resampling kernels is approximately one at any
point, specifically in all fragments x:

q =
X
k∈N

ρk(x) ≈ 1.

If q is smaller than one in a fragment, this indicates that the texture
does not completely cover the pixel and q can be used as a coverage
coefficient.

For an irregular grid, the approximation of the partition of unity
becomes less reliable. Furthermore, the Gaussians are truncated
to a finite support. With a cutoff radius c = 1 (see Section 4), we
found that a threshold τ = 0.4 for indicating full coverage produces
good results in general. The coverage q′ of a pixel is q′ = q/τ . We
implement edge antialiasing by multiplying the alpha value α of a
fragment with its coverage coefficient. The final alpha value α′ of
the fragment is α′ = α · q′ if q′ < 1, otherwise α′ = α.

8 Results
We implemented a point-sample rendering pipeline based on sur-
face splatting in software. Furthermore, we can convert geometric
models into point-based objects in a pre-processing step. Our sam-
pler generates a hierarchical data structure similar to [15], facili-
tating multiresolution and progressive rendering. It applies view-
independent EWA texture filtering to sample image textures onto
point objects. We implemented the optimized texture sampling
technique discussed in Section 5 in Matlab.

Figure 1, left, shows a face that was rendered using a point cloud
acquired by a laser range scanner. Figure 1, middle and right, show
point-sampled geometric objects. We illustrate high quality textur-
ing on terrain data and semi-transparent surfaces on the complex
model of a helicopter.

Table 2 shows the performance of our unoptimized C implemen-
tation of surface splatting. The frame rates were measured on a 1.1
GHz AMD Athlon system with 1.5 GByte memory. We rendered to
a frame buffer with three layers and a resolution of 256 × 256 and
512 × 512 pixels, respectively. A pixel needs 3 × 38 = 114 bytes
of storage. The entire frame buffer requires 6.375 MB and 25.5 MB
of memory, respectively.

Data # Points 256 × 256 512 × 512
Scanned Head 429075 1.3 fps 0.7 fps
Matterhorn 4782011 0.2 fps 0.1 fps
Helicopter 987552 0.6 fps 0.3 fps

Table 2: Rendering performance for frame buffer resolutions 256
× 256 and 512 × 512.

The texture quality of the surface splatting algorithm is equiva-
lent to conventional source space EWA texture quality. Figure 8,
top and second row, compare screen space EWA and source space
EWA on a high frequency texture with regular sampling pattern.
Note that screen space EWA is rendered with edge antialiasing and
there was no hierarchical data structure used. Moreover, the third
row illustrates splatting with circular Gaussians, similar to the tech-
niques of Levoy [10] and Shade [17]. We use the major axis of
the screen space EWA ellipse as the radius for the circular splats,
which corresponds to the choices of [10] and [17]. This leads to
overly blurred images in areas where the texture is magnified.

Figure 8: Top row: screen space EWA. Second row: source space
EWA. Third row: circular splats. Bottom: elliptical splats.

In case of minification, the circular splats approximate the screen
space EWA ellipses more closely, leading to better filtering. The
bottom row shows splatting with elliptical Gaussians that are deter-
mined using the normal direction of the surface as discussed in [16].
This amounts to omitting the band-limiting step of EWA, which
causes aliasing artifacts in regions where the texture is minified. In
contrast to these methods, screen space EWA provides a continuous
transition between minification and magnification and renders high
quality textures in both cases.
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9 Conclusions
Surface splatting is a new algorithm that makes the benefits of EWA
texture filtering accessible to point-based surface representations
and rendering techniques. We have provided a thorough mathemat-
ical analysis of the process of constructing a continuous textured
image from irregular points. We have also developed an optimized
texture sampling technique to sample image or procedural textures
onto point-based objects. Surface splatting provides stable textures
with no flickering during animations. A modified A-buffer and sim-
ple merging strategy provides transparency and edge-antialiasing
with a minimum of visual artifacts.

We will apply surface splatting to procedurally generated ob-
jects, such as parametric surfaces or fractal terrain. Rendering the
generated points in the order of computation should yield high per-
formance. We think it is possible to extend surface splatting to ren-
der volumetric objects, such as clouds, fire, and medical CT scans.
This will require extending the screen space EWA framework to
3D spherical kernels. By rendering voxels in approximate front-to-
back order we could use our modified A-buffer without undue in-
crease of the number of fragments to be merged per pixel. Because
of the simplicity of the surface splatting algorithm we are investi-
gating an efficient hardware implementation. Increasing processor
performance and real-time hardware will expand the utility of this
high quality point-rendering method.
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Appendix A: Mathematical Framework
The L2 Norm of equation (10) can be computed using inner products, and exploiting
the linearity of the operator we obtain:

F (w) = ‖
X

i

cini(t
−1(u)) −

X
j

wjrj(u − uj)‖2
L2

= 〈
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(u)),
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We minimize F (w) by computing the roots of the gradient, i.e.:

∇F (w) =

�
. . .
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. . .
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= 0.

The partial derivatives ∂F
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are given by:
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This set of linear equations can be written in matrix form:
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